Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Chinese Medical Journal ; (24): 1535-1545, 2021.
Article in English | WPRIM | ID: wpr-887611

ABSTRACT

Chronic obstructive pulmonary disease (COPD), characterized by persistent and not fully reversible airflow restrictions, is currently one of the most widespread chronic lung diseases in the world. The most common symptoms of COPD are cough, expectoration, and exertional dyspnea. Although various strategies have been developed during the last few decades, current medical treatment for COPD only focuses on the relief of symptoms, and the reversal of lung function deterioration and improvement in patient's quality of life are very limited. Consequently, development of novel effective therapeutic strategies for COPD is urgently needed. Stem cells were known to differentiate into a variety of cell types and used to regenerate lung parenchyma and airway structures. Stem cell therapy is a promising therapeutic strategy that has the potential to restore the lung function and improve the quality of life in patients with COPD. This review summarizes the current state of knowledge regarding the clinical research on the treatment of COPD with mesenchymal stem cells (MSCs) and aims to update the understanding of the role of MSCs in COPD treatment, which may be helpful for developing effective therapeutic strategies in clinical settings.


Subject(s)
Humans , Lung , Mesenchymal Stem Cells , Pulmonary Disease, Chronic Obstructive/therapy , Quality of Life , Stem Cell Transplantation
2.
Acta Physiologica Sinica ; (6): 477-482, 2006.
Article in Chinese | WPRIM | ID: wpr-265426

ABSTRACT

The present study was designed to investigate the electrophysiological characteristics of rat conduit pulmonary artery smooth muscle cells (PASMCs) and the response to acute hypoxia. PASMCs of the 1st to 2nd order branches in the conduit pulmonary arteries were obtained by enzymatic isolation. The PASMCs were divided into acute hypoxia preconditioned group and normoxia group. Hypoxia solutions were achieved by bubbling with 5% CO2 plus 95% N2 for at least 30 min before cell perfusion. Potassium currents were compared between these two groups using whole-cell patch clamp technique. The total outward current of PASMCs was measured under normoxia condition when iBTX [specific blocking agent of large conductance Ca-activated K(+) (BK(Ca)) channel] and 4-AP [specific blocking agent of delayed rectifier K(+) (K(DR)) channel] were added consequently into bath solution. PASMCs were classified into three types according to their size, shape and electrophysiological characteristics. Type I cells are the smallest with spindle shape, smooth surface and discrete perinuclear bulge. Type II cells show the biggest size with banana-like appearance. Type III cells have the similar size with type I, and present intermediary shape between type I and type II. iBTX had little effect on the total outward current in type I cells, while 4-AP almost completely blocked it. Most of the total outward current in type II cells was inhibited by iBTX, and the remaining was sensitive to 4-AP. In type III cells, the total outward current was sensitive to both iBTX and 4-AP. Acute hypoxia reduced the current in all three types of cells: (1614.8+/-62.5) pA to (892.4+/-33.6) pA for type I cells (P<0.01); (438.3+/-42.8) pA to (277.5+/-44.7) pA for type II cells (P<0.01); (1 042.0+/-37.2) pA to (613.6+/-23.8) pA for type III (P<0.01), and raised the resting membrane potentials (E(m)) in all these three types of cells: (-41.6+/-1.6) mV to (-18.6+/-1.5) mV (P<0.01), (-42.3+/-3.8) mV to (-30.6+/-3.0) mV (P<0.01), (-43.3+/-1.6) mV to (-28.4+/-1.4) mV (P<0.01), for type I, II, III cells, respectively. These results suggest that acute hypoxia suppresses the potassium current and improves the E(m) in PASMCs. These effects may be involved in the modulation of constriction/relaxation of conduit artery under acute hypoxia. Different distribution of K(DR) and BK(Ca) channels in these three types of PASMCs might account for their different constriction/relaxation response to acute hypoxia.


Subject(s)
Animals , Male , Rats , 4-Aminopyridine , Pharmacology , Calcium , Metabolism , Cell Hypoxia , Membrane Potentials , Muscle, Smooth, Vascular , Cell Biology , Physiology , Myocytes, Smooth Muscle , Physiology , Peptides , Pharmacology , Potassium Channels , Physiology , Pulmonary Artery , Cell Biology , Physiology , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL